
I. Introduction

Diabetes is recognized as a major health problem due to its 
increasing prevalence in children and adults. It is a chronic 
disease that disrupts blood glucose control and is caused by 
insulin dysfunction, which leads to increased blood glucose 
and disturbances in carbohydrate, fat, and protein metabo-
lism [1,2]. There are three main types of diabetes. Type 1 
diabetes is characterized by inadequate insulin production. 
Type 2 diabetes, which is most prevalent among individuals 
aged 45–60, involves elevated blood glucose levels resulting 
from metabolic disturbances influenced by lifestyle, diet, and 
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genetic factors [2,3]. Gestational diabetes develops during 
pregnancy and is driven by hormonal changes [3]. 
 If diabetes is not diagnosed in a timely manner and man-
aged appropriately, it can lead to serious health complica-
tions and affect various parts of the body over time [4,5]. 
Consequently, diabetes is a contributing factor to kidney dis-
eases, vision loss and other eye problems, as well as strokes 
and heart diseases [6,7]. Additionally, the economic impact 
of the disease is substantial; the global economic burden of 
diabetes is projected to reach approximately 802 billion dol-
lars by 2040 [1]. As a result, the diagnosis and prognosis of 
diabetes have garnered increasing attention [4]. In modern 
health systems, extensive databases contain vast amounts of 
data, underscoring the importance of data analysis in the de-
livery of healthcare [7,8]. Machine learning and data mining 
techniques are instrumental for extracting knowledge and 
making predictions from this data [8,9]. These methods have 
been employed in the diagnosis of diabetes, the prediction 
of complications such as nephropathy and retinopathy, and 
the identification of patients at high risk in order to enhance 
patient care and optimize the allocation of resources [10].
 Numerous studies have explored the use of machine learn-
ing for predicting and diagnosing diabetes, presenting a vari-
ety of prediction models and comparing their sensitivity and 
the area under the receiver operating characteristic (ROC) 
curve [3,4,8,11]. Despite these advancements, there remains 
potential to further improve model performance and to vali-
date these findings in new populations, such as the Iranian 
cohort. For instance, a study by Olisa et al. [4] demonstrated 
an improved model for predicting and diagnosing diabetes 
by optimizing data preprocessing methods. Additionally, 
other studies have revealed variations in the accuracy, cor-
rectness, and sensitivity of machine learning algorithms 
[3,8,11]. Moreover, only a limited number of studies have 
examined the significance of anthropometric indices, such 
as the waist-to-hip ratio (WHR), and their association with 
diabetes status. The findings from these studies have also 
been inconsistent. One study identified waist circumference 
and body mass index (BMI) as the most reliable predictors 
[12], while another suggested that waist circumference and 
the waist-to-height ratio are superior to BMI [13]. A sepa-
rate study focusing on the Iranian population found waist 
circumference to be the most effective predictor [14]. 
 Given the rising prevalence of diabetes, the unreliability 
of diagnostic measurements, the inconsistent results from 
previous studies, and the scarcity of research on the Iranian 
population, our current study employed advanced machine 
learning and data mining algorithms. We used data from 

individuals aged 30 and older living in Tehran Province who 
participated in a diabetes screening program. The goal was 
to create a predictive model for fasting blood glucose (FBG) 
status (normal versus abnormal) by utilizing demographic, 
anthropometric, and clinical risk factors as predictive fea-
tures.

II. Methods

This cross-sectional study analyzed data from a diabetes 
screening program in Tehran, Iran, involving 3,376 partici-
pants aged over 30 years. The program was conducted at 
16 governmental comprehensive health service centers to 
determine the prevalence of diabetes and its associated risk 
factors from 2018 to 2020. The diabetes screening program 
is a routine triennial event for individuals over the age of 
30. Outreach for the program is conducted by health ser-
vice provider personnel in each region. Participation in the 
screening is voluntary. A stratified multi-stage sampling 
method was employed. Data were collected using a checklist 
and the World Health Organizaqtion STEPwise approach 
to NCD risk factor surveillance (STEPS) guide techniques 
[15]. The study’s findings were reported in accordance with 
the guidelines and recommendations for machine learning 
[16,17].
 Before use, all instruments were calibrated. Participants 
were measured for height and weight while barefoot and 
wearing light clothing to ensure accuracy. Additionally, two 
indices—BMI and WHR—were used to assess obesity. Blood 
pressure was measured twice, following a 15-minute rest 
period, and the average of these measurements was recorded 
as the participant’s blood pressure. To measure FBG, venous 
blood samples were collected after a 12-hour fast. Subjects 
with an FBG level between 100 and 125 mg/dL were clas-
sified as having prediabetes, while those with an FBG level 
exceeding 125 mg/dL were classified as having diabetes [18]. 
Furthermore, subjects with a history of diabetes treatment 
were classified as having diabetes regardless of their recorded 
FBG value [19].
 The dataset displayed an imbalance in the number of re-
cords pertaining to FBG status. Out of the 3,376 records, 
2,660 subjects were classified as having a normal status, 311 
subjects were identified as having prediabetes, and 405 sub-
jects were diagnosed with diabetes. Thus, the proportion of 
diabetic individuals was approximately 12%, those with pre-
diabetes constituted around 9%, and the remaining subjects 
fell into the normal category. This imbalance in the dataset 
relative to the outcome variable can influence the modeling 
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process, as it tends to be biased towards the group with more 
data. As a result, the model’s performance in predicting out-
comes for the group with fewer records may be less than op-
timal [20]. To address this issue, the data were stratified into 
two groups (Figure 1): Group 1 (normal), subjects whose 
FBG value is less than 100 mg/dL; and Group 2 (abnormal), 
subjects on medication for high blood glucose or whose FBG 
value was 100 mg/dL or more. This group includes subjects 
with prediabetes and diabetes.
 The predictor variables and the outcome variable in this 
study were as follows:
 Outcome:
   •  The outcome was FBG status, categorized as normal ver-

sus abnormal.
 Predictors:
   •  Predictors included demographic factors (age, sex), an-

thropometrics (weight, height, BMI, WHR), clinical mea-
surements (blood pressure), behavioral factors (smoking 
status), and diabetes family history.

   •  Age, sex, smoking status, and diabetes family history 
were obtained through questionnaires.

   •  Anthropometrics were measured using standard proto-
cols (e.g., weight measured with participants barefoot 
and in light clothing).

   •  Blood pressure was measured twice following a 15-min-
ute rest period.

   •  BMI and WHR were calculated from height, weight, 
waist, and hip measurements.

 Figure 2 outlines the general steps of data processing. 
Initially, features were analyzed, and the necessary pre-
processing steps were conducted. Numerical features were 

characterized by their mean and standard deviation, while 
categorical features were described by the count of records 
for each unique value. As new features, the BMI and WHR 
were added to the dataset using values for weight, height, 
waist circumference, and hip measurements. Furthermore, 
given the significance of age as a predictor for diabetes, a 
new feature named “age group” was created. This feature cat-
egorized age into 10-year intervals (30–39, 40–49, etc.).
 Several records contained missing values. To address the 
missing values in numerical features, we imputed the mean, 
while for categorical features, we used the mode to fill in 
the gaps. Additionally, we identified and addressed outliers 
in the continuous variables. Boxplots were employed to vi-
sualize the distributions and highlight potential outliers. To 
manage these outliers, we replaced values below the 5th per-
centile and above the 95th percentile with the corresponding 
5th and 95th percentile values. This method of capping out-
liers at percentiles preserved the overall distribution while 
mitigating the influence of extreme values. Furthermore, we 
applied normalization to the numerical features and one-hot 
encoding to the categorical features.
 The Shapley method was utilized for feature selection dur-
ing the modeling process. Originating from game theory, 
this method assesses the importance of each feature in pre-
dicting the model’s outcome by calculating Shapley values 
[21]. Initially, the data were modeled using the XGBoost 
algorithm. Shapley values were then determined based on 
this preliminary model and arranged in descending order. 
The top-ranking features were incorporated as predictors 
in the final model. To determine the stability of the feature 
selection method, Gaussian noise ranging from 5% to 20% 
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subjects (2,660)

The people on medication
for high blood glucose

or FBG 100

Number of abnormal
subjects (716)

Number of people
participating in the screening

(3,376)

Figure 1.   Division of subjects into nor-
mal and abnormal groups. 
FBG: fasting blood glucose.
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was introduced to the numerical features within the training 
dataset. For each specified level of noise, a new model was 
constructed using the XGBoost algorithm, and Shapley val-
ues were recalculated. Ultimately, features that consistently 
appeared as one of the top five important features across 
various noise intensities were identified as significant. 
 The dataset was unbalanced with respect to the outcome 
variable. It contained 3,376 records, of which 2,660 subjects 
were classified as having a normal status and 716 as having 
an abnormal status. Consequently, the proportion of subjects 
with a normal status was approximately 79%. Therefore, if 
a classification algorithm were applied to this dataset with-
out modification and it predicted all records as normal, the 
accuracy would be 79%. To correct this imbalance, it was 
necessary to increase the number of records in the abnormal 
group and decrease those in the normal group to achieve a 
more balanced distribution. To address the data imbalance, 
we employed a combination of random sampling methods 
on the normal records and the synthetic minority over-sam-
pling technique (SMOTE) to augment the abnormal records 
[22]. The SMOTE technique is effective in balancing the 
dataset by generating new, synthetic samples, thereby avoid-
ing the repetition of existing samples [23]. It is important to 
note that imbalance management was conducted solely on 
the training data. Initially, the dataset was partitioned into 
training data (80%) and test data (20%). The random sam-
pling method was then applied to the training data to reduce 
the number of normal records to twice that of the abnormal 
records. Afterward, the SMOTE technique was utilized to 
increase the number of samples in the abnormal group, 
thereby equalizing the number of records between the two 
groups.
 Machine learning algorithms are broadly categorized into 
three main types: supervised, unsupervised, and reinforce-
ment learning algorithms [24]. This research specifically 
utilized supervised learning algorithms.
 The gradient boosted decision trees (GBDT) method is a 
supervised machine learning technique that currently stands 
as one of the advanced methods for modeling with decision 
trees [25]. Decision trees can achieve optimal convergence 
without the need for large datasets. Moreover, the interpret-
ability of decision trees surpasses that of neural networks, 
which often operate as a “black box.” Additionally, decision 
trees exhibit superior management of class characteristics 
and offer the ability to separate data at their decision nodes 
[26]. One of the tree-based classification algorithms intro-
duced in recent years is the CatBoost algorithm. It accom-
modates class features and has demonstrated superior per-

formance compared to other GBDTs, such as XGBoost [11] 
and LightGBM [27].
 In this research, the CatBoost, XGBoost, random forest, 
logistic regression, and feed-forward neural network algo-
rithms were used for modeling. Moreover, an ensemble vot-
ing classifier was used to combine these models. Finally, the 
modeling results based on these algorithms were compared.
 In addition to the development of the reduced model using 
the top features selected by Shapley values, a full prediction 
model was created using all original variables without feature 
selection. This enabled a comparison of model performance 
with and without feature reduction.
 After the development of various models, they were evalu-
ated using data from the test set, which comprised 20% of 
the total data. The evaluation metrics reported for the dif-
ferent models included sensitivity, specificity, accuracy, F1-
score, and area under the ROC curve (AUC). Additionally, 
ROC curves were generated for each model.
 This study involved an analysis of secondary data from 
a diabetes screening program in Tehran. Approval for the 
study was granted by the Research Council of Iran Univer-
sity of Medical Sciences (IRB No. IR.IUMS; Ethics Code 
REC.1401709). Informed consent was obtained from all 
participants in the original study. Prior to our acquisition for 
the current analysis, the data were anonymized.

III. Results

Table 1 provides details about the characteristics of the da-
taset, including additional features such as BMI and WHR. 
Figure 3 illustrates the relationship between predictor vari-
able values and FBG status, highlighting direct correlations 
among blood pressure, BMI, WHR, and FBG status. Fur-
thermore, there was an evident increase in the likelihood of 
diabetes as age progressed. The observed difference in mean 
age can be attributed to a mix of biological, lifestyle, and so-
cioeconomic factors.
 In Figure 4, boxplots depict the data before and after re-
placing outliers with 5th and 95th percentile values. This 
adjustment effectively mitigated the influence of extreme 
values, while maintaining the overall distribution. 
 Based on the results obtained from the initial modeling 
with the XGBoost algorithm and using the Shapley method, 
a set of important features was selected. Figure 5 displays the 
Shapley values calculated for training data without noise. To 
assess the robustness of feature selection, noise analysis was 
conducted with Gaussian noise ranging from 5% to 20%. 
Table 2 summarizes the top five features selected by Shapley 
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values for different noise levels.
 Age, WHR, BMI, and systolic blood pressure were consis-
tently ranked among the top five most important features 
across all noise levels. Consequently, these four features 
were selected based on their significance in predicting the 
outcome variable, and subsequent modeling was conducted 
using these variables.
 The modeling utilized several algorithms, including Cat-
Boost, random forest, XGBoost, logistic regression, and 
artificial neural network, as well as the Python program-
ming language. After a tuning procedure that employed a 
trial-and-error method, the optimal model parameters were 
identified and applied during the training phase. Figure 6 
displays the confusion matrix for the various models.
 The ensemble model yielded the highest accuracy. Of the 
676 records in the test dataset, it correctly predicted 450 
records, resulting in an accuracy rate of 0.666. The models’ 
relatively low accuracy may be attributed to the dispropor-
tionate number of normal records compared to abnormal 
ones. Additionally, the predictive variables may have been 
insufficient.
 Evaluation criteria such as accuracy, sensitivity, specificity, 

F1-Score, precision, and AUC are presented in Table 3. The 
models demonstrated nearly identical predictive capabili-
ties. The CatBoost model, however, showed a slight edge 
with an AUC of 0.737. Following CatBoost, the models were 
ranked in descending order of performance: random for-
est, XGBoost, artificial neural network, and finally, logistic 
regression. The comprehensive model, which included all 
variables, achieved the highest AUC at 0.736. Notably, the 
streamlined model that utilized only the top four selected 
features showed a slight improvement in overall perfor-
mance. Although the increase in performance was modest, 
the use of fewer features offers benefits in terms of simplic-
ity, interpretability, and a reduced risk of overfitting.
 Figure 7 presents the ROC curve for the various mod-
els, showing comparable outcomes. The CatBoost model 
achieved the highest AUC value of 0.737, surpassing the ran-
dom forest, XGBoost, artificial neural network, and logistic 
regression models, which had AUC values of 0.732, 0.725, 
0.723, and 0.722, respectively.

Table 1. Sample characteristics

Feature Normal (n = 2,660) Abnormal (n = 716)

Age (yr) 46.18 ± 12.35 (n = 2,637) 55.85 ± 12.45 (n = 712)
SBP (mmHg) 111.83 ± 13.06 (n = 2,631) 118.31 ± 13.98 (n = 696)
DBP (mmHg) 72.18 ± 8.01 (n = 2,660) 75.72 ± 8.44 (n = 716)
Smoking status
   Yes 120 (5.3) 23 (3.6)
   No 2,150 (94.7) 623 (96.4)
Sex
   Male 1,013 (38.1) 246 (34.4)
   Female 1,647 (61.9) 470 (65.6)
Weight (kg) 75.51 ± 12.33 (n = 2,644) 77.55 ± 14.13 (n = 693)
Height (cm) 163.58 ± 8.44 (n = 2,656) 161.98 ± 8.73 (n = 695)
Waist (cm) 94.99 ± 12.85 (n = 2,598) 98 ± 13.41 (n = 684)
Hip (cm) 105.14 ± 11.47 (n = 2,601) 105.62 ± 13.04 (n = 689)
Fasting blood glucose (mg/dL) 84.45 ± 7.54 (n = 2,660) 136.60 ± 58.15 (n = 572)
Diabetes family history
   Yes 501 (21.5) 184 (27.8)
   No 1,829 (78.5) 479 (72.2)
BMI (kg/m2) 28.27 ± 4.63 (n = 2,644) 29.56 ± 4.97 (n = 692)
WHR 0.90 ± 0.08 (n = 2,587) 0.93 ± 0.08 (n = 682)

Values are presented as mean ± standard deviation or number (%).
SBP: systolic blood pressure, DBP: diastolic blood pressure, BMI: body mass index, WHR: waist-to-hip ratio.
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IV. Discussion

Artificial intelligence offers considerable benefits for event 
prediction through the use of machine learning algorithms 

and has proven effective in forecasting diabetes status [28]. 
In this study, we utilized five machine learning algorithms—
CatBoost, random forest, XGBoost, logistic regression, and 
an artificial neural network—to analyze the dataset. The 
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CatBoost algorithm, which is recognized for its ability to 
process categorical features directly without the need for 
pre-processing, exhibited the highest accuracy in terms of 
model performance. Notably, the CatBoost model delivered 

the most favorable results in our research, achieving an AUC 
of 0.737 on the test data. This result confirms the model’s 
efficacy in predicting FBG status by incorporating relevant 
risk factors.
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Table 2. Effects of noise on important features based on Shapley 
values

Noise level 5 important features in order of importance

No noise Age, WHR, BMI, SBP, Sex
5% Age, WHR, BMI, SBP, Diabetes family history
10% Age, WHR, BMI, SBP, Diabetes family history
15% Age, WHR, SBP, BMI, DBP
20% Age, SBP, BMI, WHR, Diabetes family history

WHR: waist-to-hip ratio, BMI: body mass index, SBP: systolic 
blood pressure, DBP: diastolic blood pressure. 

Figure 6.   Confusion matrix for different models: (A) CatBoost, (B) logistic regression, (C) random forest, (D) XGBoost, (E) artificial 
neural network, and (F) ensemble classifier.
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Table 3. Comparison of model performance

Accuracy Sensitivity Specificity Precision F1-score AUC-ROC

CatBoost 0.654 0.713 0.638 0.346 0.466 0.737
Logistic regression 0.664 0.657 0.667 0.346 0.453 0.722
Random forest 0.658 0.72 0.642 0.35 0.471 0.732
XGBoost 0.658 0.72 0.642 0.35 0.471 0.725
ANN 0.638 0.699 0.621 0.331 0.449 0.723
Ensemble 0.666 0.685 0.66 0.351 0.464 0.673
ANN: artificial neural network, AUC: area under the curve, ROC: receiver operating characteristic.
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 In the present study, the Shapley method was employed to 
identify important features from the 13 characteristics under 
consideration. The noise analysis shed light on the robust-
ness of the feature selection process. Age and WHR dem-
onstrated the greatest resistance to noise, consistently main-
taining the highest Shapley values at various noise levels. 
This indicates a strong and significant correlation between 
these characteristics and FBG status. Conversely, systolic 
blood pressure and body mass index were more susceptible 
to noise, suggesting a potentially weaker link that could be 
affected by data variability. Despite some fluctuations in 
feature relevance due to noise, age, WHR, BMI, and systolic 
blood pressure were identified as the primary predictors 
across all noise conditions. These findings align with those 
of previous research, which has identified age, family history 
of diabetes, waist circumference, BMI, systolic blood pres-
sure, stress, and physical activity level as some of the most 
significant risk factors [29]. 
 The current findings indicate that predicting FBG status 
presents significant challenges. Various factors can affect the 
outcomes. In many of the models we created, the accuracy 
was relatively low when compared to other metrics. How-
ever, metrics such as sensitivity and the AUC were deemed 
appropriate. This discrepancy may be due to an imbalanced 
distribution of data across the model’s output classes, with a 
preponderance of the dataset representing a normal status. 
To address this imbalance in the output class, we employed 
random sampling and the SMOTE technique exclusively on 
the training data. Consequently, the imbalance persisted in 
the test data, contributing to the models’ reduced accuracy. 
Additionally, incorporating more features, such as levels of 
physical activity and stress, could enhance both the accuracy 

and the validity of the predictions. 
 The dataset exhibited a smaller number of records pertain-
ing to subjects with abnormal FBG status in comparison to 
those with normal status. This discrepancy mirrors the lower 
prevalence of abnormal blood glucose levels within the gen-
eral population. It is important to note that the quantity of 
data records within each category can significantly influence 
the performance of a machine learning model [30].
 The lack of validation by an external cohort is acknowl-
edged as a limitation of this study. Validating the model us-
ing an independent dataset would enable an assessment of 
its generalizability to new populations.
 It is important to note that including patients with predia-
betes affects the interpretation and application of the model. 
This inclusion likely improves the model’s ability to predict 
early diabetes risk, but it may reduce its accuracy in diagnos-
ing the current disease state. As a result, the model is most 
effective when used to identify individuals at high risk who 
could benefit from preventive interventions, rather than as a 
diagnostic tool. However, the model’s accuracy in predicting 
diabetes alone may be lower than that of models that are spe-
cifically developed for individuals with diagnosed diabetes. 
Further research is needed to optimize models for predicting 
prevalent diabetes, which should involve using larger sample 
sizes of patients with diabetes. Despite its limitations in di-
agnosis, this model offers valuable insights into the combi-
nation of risk factors for early prediction, which can inform 
screening and prevention programs.
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